skip to main content


Search for: All records

Creators/Authors contains: "Meyers, Marc"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. null (Ed.)
  3. The equine hoof wall has a unique hierarchical structure that allows it to survive high‐impact scenarios. Previous authors have explored the compressive, viscoelastic, and fracture control properties of the hoof wall and suggested that this complex structure plays a vital role in the hoof's behavior. However, the link between the structure and the behavior of the hoof wall has been made primarily with the use of post‐fracture analysis. Here, periodic microcomputed tomography scans are used to observe the temporal behavior of the hoof's meso and microstructures during compression, fracture, and relaxation. These results shed light on the structural anisotropy of the hoof wall and how its hollow tubules behave when compressed in different directions, at different hydration levels, and in various locations within the hoof wall. The behavior of tubule bridges during compression is also reported for the first time. This study elucidates several fracture phenomena, including the way cracks are deflected at tubule interfaces and tubule bridging, tubule arresting, and fiber bridging. Finally, relaxation tests are used to show how the tubule cavities can regain their shape after compression.

     
    more » « less
  4. Freeze casting under external fields (magnetic, electric, or acoustic) produces porous materials having local, regional, and global microstructural order in specific directions. In freeze casting, porosity is typically formed by the directional solidification of a liquid colloidal suspension. Adding external fields to the process allows for structured nucleation of ice and manipulation of particles during solidification. External control over the distribution of particles is governed by a competition of forces between constitutional supercooling and electromagnetism or acoustic radiation. Here, we review studies that apply external fields to create porous ceramics with different microstructural patterns, gradients, and anisotropic alignments. The resulting materials possess distinct gradient, core–shell, ring, helical, or long-range alignment and enhanced anisotropic mechanical properties. 
    more » « less